Benefits of Healthcare Biotech changing lives, bringing hope
Biopharmaceutical Industry in numbers

• More than **350 million patients** have already benefited from approved medicines manufactured through biotechnology and gene technology*

• More than **650 new biotechnology medicines and vaccines** are currently being tested for more than 100 diseases, including cancer, diabetes, Alzheimer’s, AIDS, rare diseases*

• **2.5 million** is the number of childhood deaths prevented worldwide each year by immunisation**

• More than **20 vaccines** for infectious diseases have been developed – many of them for children**

* Source: Biotechnology Research Continues to Bolster Arsenal Against Disease with 633 Medicines in Development. PhRMA Report, 2008

Red biotechnology products in development by disease category*

*Source: PhRMA, Medicines in Development: Biotechnology 2011 Report
The pharmaceutical sector directly and indirectly addresses many of the priorities of the EU Horizon 2020

<table>
<thead>
<tr>
<th>Objectives of the Europe 2020 and Horizon 2020 initiatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe 2020 priorities and targets</td>
</tr>
<tr>
<td>* Smart growth</td>
</tr>
<tr>
<td>* Education</td>
</tr>
<tr>
<td>* Research and innovation</td>
</tr>
<tr>
<td>Horizon 2020 goals</td>
</tr>
<tr>
<td>* Strengthen the EU’s position in science</td>
</tr>
<tr>
<td>Pharma’s Contribution</td>
</tr>
<tr>
<td>* High-quality research jobs, academic partnerships</td>
</tr>
<tr>
<td>* Europe’s most research intensive manufacturing industry</td>
</tr>
<tr>
<td>* Sustainable growth</td>
</tr>
<tr>
<td>* Sustainable low-carbon economy</td>
</tr>
<tr>
<td>Inclusive growth</td>
</tr>
<tr>
<td>* Job creation</td>
</tr>
<tr>
<td>* Poverty reduction</td>
</tr>
<tr>
<td>* Address concerns including affordability, sustainability, security and ageing</td>
</tr>
<tr>
<td>* Creating jobs in manufacturing, with spill overs to other sectors</td>
</tr>
<tr>
<td>* Reduces causes of social exclusion and inequality</td>
</tr>
</tbody>
</table>

Poor health has long been recognised as a key driver of social and economic inequality.

Employment and at-risk-of-poverty rates for disabled and non-disabled EU citizens

Employment rate
- **No disability**: 68%
- **With disability**: 44%

At-risk-of-poverty rate
- **No disability**: 14%
- **With disability**: 21%

- **EU citizens reporting a disability are between 1.8 and 3.2 times less likely to be employed.**
- **The same individuals are also between 1.3 and 2.7 times more likely to be at risk of poverty.**

Note: "Disability" defined as responding either "Yes, strongly limited" or "Yes, limited" to the question: "Does the respondent have limitations because of health problems in activities people usually do, for at least the last 5 months?"

In widespread diseases: Diabetes

First major biotech treatment breakthrough: Insulin (1978)
Recombinant DNA technology produced Insulin in bacteria cells
Avoided allergic reactions – previously harvested directly from animals (pigs & cows)
No shortages – allowed enough to be produced

And in rare & serious diseases:
Haemophilia
Gaucher Disease
Mucopolysaccharidosis I (MPS I; alpha-L-iduronidase deficiency)
Idiopathic pulmonary fibrosis
...
Personalised (Stratified) Medicine
An emerging trend – future reality?

Matching Patients and Therapy

- **Diagnostic test positive**
 - Treat patients likely to benefit from treatment

- **Diagnostic test negative**
 - Remove unresponsive patients and explore other therapeutic options

- **Diagnostic test negative and reveals potential adverse reactions**
 - Remove unresponsive patients and explore other therapeutic options
The Value of Prevention

How Vaccines have changed our world*

*CDC web site 2013
Scorecard: Results presentation *

<table>
<thead>
<tr>
<th>Government budget item</th>
<th>Value</th>
<th>Incremental Fiscal impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical cost-savings</td>
<td>Savings</td>
<td>€6,651,724</td>
</tr>
<tr>
<td>Productivity loss (social insurance)</td>
<td>Savings</td>
<td>€4,199,281</td>
</tr>
<tr>
<td>Prevented disability costs</td>
<td>Savings</td>
<td>€502,426</td>
</tr>
<tr>
<td>Gross discounted tax</td>
<td>Revenue</td>
<td>€537,394,410</td>
</tr>
<tr>
<td>Vaccination cost</td>
<td>Cost</td>
<td>€136,878,802</td>
</tr>
<tr>
<td>B/C ratio</td>
<td>Return on investment</td>
<td>€4.02</td>
</tr>
</tbody>
</table>

* Investment €1 in adult immunization has the capacity to generate over €4 of future economic revenue for government

* SAATI / GMAS
Healthcare biotech “Version 2.0” delivering sustainable outcomes...

BUT

“the...drug could potentially be very effective for a small percentage of patients”

“Unfortunately, no [ways] have yet been identified to help identify this small group of people”

Sir Andrew Dillon
NICE, 2011

1. Effect size is most important
 ✓ Requires strongest possible link between therapy and specific patient

2. Evidence in real life
 ✓ Key to value-based patient access are outcomes over time
A vision for Europe

Complexity of data to demonstrate value

<table>
<thead>
<tr>
<th>RCTs</th>
<th>Comparative data</th>
<th>Real world data & modelling</th>
<th>Various</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLINICAL EFFICACY & SAFETY</td>
<td>ADDED THERAPEUTIC VALUE</td>
<td>HEALTH SYSTEM VALUE</td>
<td>SOCIETAL VALUE</td>
</tr>
</tbody>
</table>

- Regulators
- Regulators & Payers
- Payers, Providers & Patients
- Payers, Providers & Patients

Complexity of data to demonstrate value
Clinical Trials

- **Phase 1**
 - Number of Patients/Subjects: 20-100
 - Duration: 6 – 7 Years

- **Phase 2**
 - Number of Patients/Subjects: 100-500

- **Phase 3**
 - Number of Patients/Subjects: 1000-5000

Efficacy describes how a drug performs under conditions of clinical trials.

Regulatory Review

- **EMA Filing**
- **EMA Approval for Sale**
- **HTA Approval**
- **Negotiation for Reimbursement**
 - 27 member States

Effectiveness describes how a drug performs in everyday clinical practice.

2 – 5 Years

“Pre and post-licensing technologies will need to be harnessed to bridge the efficacy–effectiveness gap”

Factors affecting incentives to invest in R&D

Pre-market factors
- Further commitments to pre-competitive research in IMI and Horizon 2020
- New development pathways for targeted medicines
- Progressive approvals

In-market factors
- Value-based pricing
- The right early benefit assessment
- Early, but managed entry schemes for entering the market
- Overall budgets to reflect value of medicines to society
- Equity and solidarity in access to medicines

SUPPLY

DEMAND
Conclusions

Biotechnology
Has already changed the therapeutic landscape for many severe, life-threatening and diseases – rare & common
Identification of the underlying cause – not merely symptomatic treatment
Next steps – stratification in targeting where a treatment can really make a difference
Future – resetting the agenda: prevention, diagnosis, treatment and cure

We therefore
Are ready to tackle the new challenges for drug development and stand to demonstrate the value of our products together with all the partners involved in healthcare

However
Stronger interactions and partnership with all stakeholders throughout the development and approval process will be key to make new innovations a reality for patients